Compare rec. lab reagents for research




Suppliers for Lab polyclonals

2X PCR HotStart MasterMix with dye

G906-dye ABM 5.0 ml (200 Rxns)

2X PCR Taq Plus MasterMix with dye

G014-dye ABM 5.0 ml (200 Rxns)

2X PCR Precision™ MasterMix with dye

G124-dye ABM 5.0 ml (200 Rxns)

One-Step RT-PCR Kit with dye

G174-dye ABM 100 x 50 ul reactions

2X PCR Bestaq™ MasterMix with dye

G464-dye ABM 5.0 ml (200 Rxns)

2X PCR Taq Plus MasterMix with dye

G901-dye ABM 25.0 ml (1000 Rxns)

2X PCR SensTaq HotStart MasterMix with Dye

G939-Dye ABM 5.0 ml (200 Rxns)

Purified Dog CRP - Recombinant | AG-40CRP-REC

AG-40CRP-REC Immunology Consultants Laboratory 1.0 mg 1423 EUR

rec Leptin (human)

H-5578.0200 Bachem 0.2mg 194.4 EUR

rec Leptin (human)

H-5578.1000 Bachem 1.0mg 457.2 EUR

rec Leptin (mouse)

H-5582.0200 Bachem 0.2mg 194.4 EUR

rec Leptin (mouse)

H-5582.1000 Bachem 1.0mg 457.2 EUR

rec EGF (human)

H-7490.0100 Bachem 0.1mg 194.4 EUR

rec EGF (human)

H-7490.0500 Bachem 0.5mg 457.2 EUR

pGADT7- Rec Plasmid

PVT4025 Lifescience Market 2 ug 390 EUR

Our used References in Pubmed.

rec IL-1a (human)

H-9795.0002 Bachem 2.0µg 194.4 EUR

rec IL-1a (human)

H-9795.0010 Bachem 10.0µg 457.2 EUR

rec Oncostatin M (human)

H-1716.0002 Bachem 2.0µg 194.4 EUR

rec Oncostatin M (human)

H-1716.0010 Bachem 10.0µg 457.2 EUR

rec Neurotrophin-3 (human)

H-1726.0002 Bachem 2.0µg 194.4 EUR

Compare monoclonal lab reagents for research



Suppliers for Lab recombinants

Urocortin (rat)

H-3362.1000 Bachem 1.0mg
Description: Sum Formula: C206H338N62O64; CAS# [171543-83-2] net

GDNF (Rat)

PR15008 Neuromics 50 ug

Leptin-Rat

PR27100 Neuromics 200 ug

Rat Cardiomyocytes

PC35134 Neuromics P0 Rat - Whole Heart Dissociated Cells X2

Rat(H2b)

QY-E11674 Qayee Biotechnology 96T

Rat(TRAP)

QY-E11743 Qayee Biotechnology 96T

SCF, rat

RC253-12 Bio Basic 2ug

Monoclonal GR monoclonal antibody

AMM00029G Leading Biology 0.05mg 633.6 EUR

Monoclonal EZH2 monoclonal antibody

AMM00030G Leading Biology 0.05mg 633.6 EUR

Monoclonal HDAC2 monoclonal antibody

AMM00031G Leading Biology 0.05mg 633.6 EUR

Monoclonal Rsf1 monoclonal antibody

AMM07673G Leading Biology 0.05mg 633.6 EUR

Monoclonal Rsf1 monoclonal antibody

AMM07674G Leading Biology 0.1ml 633.6 EUR

Monoclonal SirT1 monoclonal antibody

APR09951G Leading Biology 0.05mg 580.8 EUR

Monoclonal SirT1 monoclonal antibody

APR09952G Leading Biology 0.1ml 580.8 EUR

Monoclonal TBP monoclonal antibody

APR13720G Leading Biology 0.1ml 633.6 EUR

Our used antibodies in Pubmed.

CA125 (Cancer antigen) ELISA test

11 Biobase 96T/Box Ask for price

FT3 (Free triiodothyronine) ELISA test

17 Biobase 96T/Box Ask for price

CA50 (Cancer antigen) ELISA test

10 Biobase 96T/Box Ask for price

CA153 (Cancer antigen) ELISA test

12 Biobase 96T/Box Ask for price

CA199 (Cancer antigen) ELISA test

13 Biobase 96T/Box Ask for price

recombinant Lab Reagents for Research





Promoted Lab polyclonals

Accu-Tell COVID-19 IgG/IgM Rapid Test

GEN-B352-20tests Accu test 20 tests 283.2 EUR

Accu-Tell COVID-19 IgG/IgM Rapid Test

GEN-B352-40tests Accu test 40 tests 385.2 EUR

Test product

testtt National Diagnostics 0 Ask for price

2019-nCoV IgG/IgM Rapid Test Cassette (Whole Blood/Serum/Plasma)

GEN-402-25tests All test 25 tests 292.8 EUR

DNASE TEST AGAR

D04-101-10kg Alphabiosciences 10 kg Ask for price

DNASE TEST AGAR

D04-101-2Kg Alphabiosciences 2 Kg Ask for price

Custom Antibody titration by ELISA up to 2 rabbits and 1 bleed

ELISA-1 Alpha Diagnostics 1 242.4 EUR

Beta2-Microglobulin ELISA kit ELISA Kit

LF-EK60047 Abfrontier 1×96T 814.8 EUR

Chicken thrombomodulin,TM ELISA KIT ELISA

QY-E80092 Qayee Biotechnology 96T 511.2 EUR

Oxycodone ELISA

EK7130 BosterBio 96wells/kit 573.6 EUR

Amphiphysin ELISA

LF-EK0189 Abfrontier 1×96T 723.6 EUR

SAM ELISA

IK00201 Arthus 96 tests 720 EUR

SAH ELISA

IK00301 Arthus 96 tests 1188 EUR

Our used rec. in Pubmed.

Ly1 Antibody Reactive (LYAR) Antibody

abx033330-400ul Abbexa 400 ul 627.6 EUR

Ly1 Antibody Reactive (LYAR) Antibody

abx033330-80l Abbexa 80 µl 343.2 EUR

Anti-Glycolipid Antibody (AGA) Antibody

abx036399-100ug Abbexa 100 ug 469.2 EUR

Anti-Glycoprotein Antibody (GP) Antibody

20-abx319900 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Anti-Glycoprotein Antibody (GP) Antibody

20-abx319901 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Anti-Glycoprotein Antibody (GP) Antibody

20-abx319905 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Anti-Glycoprotein Antibody (GP) Antibody

20-abx319913 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Anti-Glycolipid Antibody (AGA) Antibody

abx230204-100ug Abbexa 100 ug 577.2 EUR

Ly1 Antibody Reactive (LYAR) Antibody

20-abx324434 Abbexa
  • 376.80 EUR
  • 292.80 EUR
  • 100 ug
  • 50 ug

Ly1 Antibody Reactive (LYAR) Antibody

20-abx311665 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Downregulated RRS1 inhibits invasion and metastasis of BT549 through RPL11‑c‑Myc‑SNAIL axis

Regulator of ribosome synthesis 1 (RRS1) is a key factor in ribosome biosynthesis and other cellular functions. High level of RRS1 in breast cancer cell lines is associated with increased cell proliferation, invasion and migration. RRS1 controls the assembly of the 60s subunit and maturation of 25S rRNA during ribosome biosynthesis.
In this study, lentiviral transfection of sh‑RNA was used to knock down the level of RRS1, to detect the effect of RRS1 on cell function and to explore the specific mechanism of RRS1 affecting cell invasion and metastasis by COIP and dual‑luciferase reporter gene assays.
The present study found that RRS1 knockdown reduced the accumulation of ribosome protein L11 (RPL11) in the nucleolus, which then migrated to the nucleoplasm and bound to c‑Myc. This inhibited trans‑activation of SNAIL by c‑Myc and eventually decreased the invasion and metastasis capacity of the human breast cancer cell line BT549.
Taken together, RRS1 regulates invasion and metastasis of human breast cancer cells through the RPL11‑c‑Myc‑SNAIL axis. The findings are of great significance for exploring the mechanism of breast cancer invasion and metastasis and the corresponding regulatory factors.

Jumonji-C domain-containing protein 5 suppresses proliferation and aerobic glycolysis in pancreatic cancer cells in a cMyc-dependent manner

Despite the importance of metabolic reprogramming in cancer cells, the molecular mechanism regulating the tumor metabolic shift is still poorly understood. Deregulation of Jumonji-C domain-containing protein 5 (JMJD5) has been associated with multiple facets of biological processes in cancer cells.
However, the role of JMJD5 in pancreatic cancer cells has seldom been discussed and requires further investigation. In the present study, by silencing or overexpressing JMJD5 in pancreatic cancer cells, we examined the impact of JMJD5 on cell proliferation and glucose metabolism. Using a dual luciferase assay, we assessed the effect of JMJD5 on the transcriptional activity of the c-Myc target gene.
Analyzing The Cancer Genome Atlas and the Gene Expression Omnibus datasets revealed that low JMJD5 expression was associated with poor prognosis in patients with pancreatic cancer.
JMJD5 loss promoted pancreatic cancer cell proliferation and induced a cellular metabolic shift from oxidative phosphorylation to glycolysis. In addition, in vivo experiments confirmed that ectopic JMJD5 expression inhibited cancer cell growth and the expression of glycolytic enzymes, such as lactate dehydrogenase and phosphoglycerate kinase 1.
Moreover, JMJD5 negatively regulated c-Myc expression, the main regulator of cancer metabolism, leading to decreased c-Myc-targeted gene expression. Overall, the present study indicated that decreased JMJD5 expression promoted cell proliferation and glycolytic metabolism in pancreatic cancer cells in a c-Myc-dependent manner.

Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of cMYC

The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion.
This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels.
Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.

Rational design of small-molecules to recognize G-quadruplexes of cMYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer

DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging.
We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity.
The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures.
The ligand-G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures.
Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.

cMyc Targets HDAC3 to Suppress NKG2DL Expression and Innate Immune Response in N-Type SCLC through Histone Deacetylation

SCLC is an aggressive malignancy with a very poor prognosis and limited effective therapeutic options. Despite the high tumor mutational burden, responses to immunotherapy are rare in SCLC patients, which may be due to the lack of immune surveillance.
Here, we aimed to examine the role and mechanism of oncogene MYC in the regulation of NKG2DL, the most relevant NK-activating ligand in SCLC-N.
Western Blotting, Immunofluorescence, flow cytometry, quantitative real-time PCR (qRT-PCR), Co-Immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), and Cytotoxicity assay were used on H2227 cells, H446 cells, and other SCLC cell lines, and we found that c-Myc negatively regulated NKG2DL expression in SCLC-N cells. Mechanistically, c-Myc recruited HDAC3 to deacetylate H3K9ac at the promoter regions of MICA and MICB, suppressing the MICA/B expression of SCLC-N cells and the cytotoxicity of NK cells.

c-Myc Epitope (Myc) Antibody

20-abx132269 Abbexa
  • 526.80 EUR
  • 159.60 EUR
  • 1513.20 EUR
  • 727.20 EUR
  • 410.40 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

c-Myc Epitope (Myc) Antibody

20-abx130438 Abbexa
  • 376.80 EUR
  • 910.80 EUR
  • 493.20 EUR
  • 184.80 EUR
  • 292.80 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

OVA Conjugated c-Myc Epitope (Myc)

4-CPX162Ge21 Cloud-Clone
  • 237.19 EUR
  • 187.20 EUR
  • 559.49 EUR
  • 266.50 EUR
  • 412.99 EUR
  • 234.00 EUR
  • 1218.72 EUR
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg

pMXs- c- Myc

PVT10447 Lifescience Market 2 ug 361.2 EUR

pCMV- Myc- C

PVT10696 Lifescience Market 2 ug 361.2 EUR

C- Myc Plasmid

PVT7185 Lifescience Market 2 ug 319.2 EUR

c Myc antibody

10R-8403 Fitzgerald 100 ul 471.6 EUR

c-Myc(MYC275) Antibody

BNCA0275-250 Biotium 250uL 459.6 EUR

c-Myc(MYC699) Antibody

BNCA0699-250 Biotium 250uL 459.6 EUR

c-Myc(MYC909) Antibody

BNC800909-100 Biotium 100uL 238.8 EUR

c-Myc(MYC909) Antibody

BNC800909-500 Biotium 500uL 652.8 EUR

c-Myc(MYC275) Antibody

BNC800275-100 Biotium 100uL 238.8 EUR

c-Myc(MYC275) Antibody

BNC800275-500 Biotium 500uL 652.8 EUR

c-Myc(MYC699) Antibody

BNC800699-100 Biotium 100uL 238.8 EUR

c-Myc(MYC699) Antibody

BNC800699-500 Biotium 500uL 652.8 EUR

c-Myc(MYC275) Antibody

BNC810275-100 Biotium 100uL 238.8 EUR

c-Myc(MYC275) Antibody

BNC810275-500 Biotium 500uL 652.8 EUR
Treatment with selective HDAC3 inhibitor up-regulated the expression of NKG2DL on SCLC-N cells and increased the cytotoxicity of NK cells. Furthermore, analysis of the CCLE and Kaplan-Meier plotter data performed the negative correlation between MYC and NKG2DL in SCLC-N cells and the correlation with the prognosis of lung cancer patients.
Collectively, the results provided the new insight into the role and mechanism of c-Myc/HDAC3 axis in NKG2DL expression and innate immune escape of SCLC-N, suggesting the potential target for SCLC-N immunotherapy.

Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide

DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8).
The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in the immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin.
We fused a 5′ terminal cDNA fragments for the Fab region of 2H8 mAb with 3′ terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flow cytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb.
Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues.

Thoracic Society of Australia and New Zealand Position Statement on Acute Oxygen Use in Adults: ‘Swimming between the flags

Oxygen is a life-saving therapy but, when given inappropriately, may also be hazardous. Therefore, in the acute medical setting, oxygen should only be given as treatment for hypoxaemia and requires appropriate prescription, monitoring and review.
This update to the Thoracic Society of Australia and New Zealand (TSANZ) guidance on acute oxygen therapy is a brief and practical resource for all healthcare workers involved with administering oxygen therapy to adults in the acute medical setting.
It does not apply to intubated or paediatric patients. Recommendations are made in the following six clinical areas: assessment of hypoxaemia (including use of arterial blood gases); prescription of oxygen; peripheral oxygen saturation targets; delivery, including non-invasive ventilation and humidified high-flow nasal cannulae; the significance of high oxygen requirements; and acute hypercapnic respiratory failure.
There are three sections which provide (1) a brief summary, (2) recommendations in detail with practice points and (3) a detailed explanation of the reasoning and evidence behind the recommendations. It is anticipated that these recommendations will be disseminated widely in structured programmes across Australia and New Zealand.

Decitabine and Vorinostat with FLAG Chemotherapy in Pediatric Relapsed/Refractory AML: Report from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium

Survival outcomes for relapsed/refractory pediatric acute myeloid leukemia (R/R AML) remain dismal. Epigenetic changes can result in gene expression alterations which are thought to contribute to both leukemogenesis and chemotherapy resistance.
We report results from a phase I trial with a dose expansion cohort investigating decitabine and vorinostat in combination with fludarabine, cytarabine, and G-CSF (FLAG) in pediatric patients with R/R AML [NCT02412475]. Thirty-seven patients enrolled with a median age at enrollment of 8.4 (range, 1-20) years. There were no dose limiting toxicities among the enrolled patients, including two patients with Down syndrome. The recommended phase 2 dose of decitabine in combination with vorinostat and FLAG was 10 mg/m2 .
The expanded cohort design allowed for an efficacy evaluation and the overall response rate among 35 evaluable patients was 54% (16 complete response (CR) and 3 complete response with incomplete hematologic recovery (CRi)). Ninety percent of responders achieved minimal residual disease (MRD) negativity (<0.1%) by centralized flow cytometry and 84% (n=16) successfully proceeded to hematopoietic stem cell transplant.
Two-year overall survival was 75.6% [95%CI: 47.3%, 90.1%] for MRD-negative patients vs. 17.9% [95%CI: 4.4%, 38.8%] for those with residual disease (p<0.001). Twelve subjects (34%) had known epigenetic alterations with 8 (67%) achieving a CR, 7 (88%) of whom were MRD negative.
Correlative pharmacodynamics demonstrated biologic activity of decitabine and vorinostat and identified specific gene enrichment signatures in non-responding patients.
Overall, this therapy was well-tolerated, biologically active, and effective in pediatric patients with R/R AML, particularly those with epigenetic alterations. This article is protected by copyright. All rights reserved.

Dento-facial infections in children – A potential red flag for child neglect?

Background: Healthcare professionals are often confronted with children presenting to the emergency department with dento-facial infections. These infections may be associated with dental neglect and as such could be a marker for general neglect. The aim of this retrospective study was to ascertain whether dento-facial infections can be used as an indicator for general neglect.
Method: All children aged 16 years and under, who were admitted for surgical incision and drainage of dento-facial infection between January 2017 and January 2019 at King’s College Hospital were examined retrospectively. All patients were discussed with the local safeguarding team/local authority to establish whether they were previously known to social services.
Results: This study showed that in our cohort, 48% of children admitted with dento-facial infection were already known to social services and one (2%) had been recently referred. The most commonly affected age group were 5-8-year-olds (50%) indicating that these children have an increased risk of neglect. An average of 5.6 teeth were extracted and four (10%) patients required extra-oral drainage. The average hospital stay was 2.26 days.
Conclusion: Our retrospective study revealed that social services were already aware of 48% of patients under the age of 16, who were admitted to hospital with a dento-facial infection.
This suggests a relationship between dental neglect and generalised neglect. Families of children presenting with dento-facial infection should be supported in accessing appropriate dental services for their children and clinicians should consider dento-facial infection a potential ‘red flag’ for generalised neglect.
Keywords: Child neglect; Dental neglect; Dento-facial infections; Maxillofacial.

Reduced Expression of Emotion: A Red Flag Signalling Conversion to Psychosis in Clinical High Risk for Psychosis (CHR-P) Populations

Objective: In this hypothesis-testing study, which is based on findings from a previous atheoretical machine-learning study, we test the predictive power of baseline “reduced expression of emotion” for psychosis.Method: Study participants (N = 96, mean age 16.55 years) were recruited from the Prevention of Psychosis Study in Rogaland, Norway. The Structured Interview for Prodromal Syndromes (SIPS) was conducted 13 times over two years. Reduced expression of emotion was added to positive symptoms at baseline (P1-P5) as a predictor of psychosis onset over a two-year period using logistic regression.
Results: Participants with a score above zero on expression of emotion had over eight times the odds of conversion (OR = 8.69, p < .001).
Data indicated a significant dose-response association. A model including reduced expression of emotion at baseline together with the positive symptoms of the SIPS rendered the latter statistically insignificant.

FLAG Octapeptide (FLAG) Peptide

20-abx652293 Abbexa
  • 627.60 EUR
  • 292.80 EUR
  • 1796.40 EUR
  • 727.20 EUR
  • 460.80 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

FLAG Octapeptide (Flag) Antibody

abx016078-100ul Abbexa 100 ul 493.2 EUR

FLAG Octapeptide (FLAG) Antibody

20-abx130436 Abbexa
  • 477.60 EUR
  • 1195.20 EUR
  • 594.00 EUR
  • 184.80 EUR
  • 343.20 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

FLAG Octapeptide (FLAG) Antibody

20-abx132268 Abbexa
  • 526.80 EUR
  • 159.60 EUR
  • 1479.60 EUR
  • 710.40 EUR
  • 393.60 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

FLAG Octapeptide (Flag) Antibody

20-abx118001 Abbexa
  • 661.20 EUR
  • 577.20 EUR
  • 100 ul
  • 50 ul

Synthetic FLAG Octapeptide (FLAG)

4-SPX159Ge01 Cloud-Clone
  • 442.56 EUR
  • 242.40 EUR
  • 1329.60 EUR
  • 523.20 EUR
  • 926.40 EUR
  • 372.00 EUR
  • 3144.00 EUR
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg

FLAG Octapeptide (FLAG) Peptide (OVA)

20-abx651286 Abbexa
  • 326.40 EUR
  • 226.80 EUR
  • 727.20 EUR
  • 360.00 EUR
  • 276.00 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

OVA Conjugated FLAG Octapeptide (FLAG)

4-CPX159Ge21 Cloud-Clone
  • 225.37 EUR
  • 183.60 EUR
  • 515.14 EUR
  • 251.71 EUR
  • 383.42 EUR
  • 225.60 EUR
  • 1107.84 EUR
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg

Flag Tag

70R-36938 Fitzgerald 100 ug 418.8 EUR

pLJM1- Flag

PVT11081 Lifescience Market 2 ug 444 EUR

pCXUN- Flag

PVT11175 Lifescience Market 2 ug 361.2 EUR

pCXSN- Flag

PVT11176 Lifescience Market 2 ug 361.2 EUR

Flag- SIRT1

PVT11538 Lifescience Market 2 ug 364.8 EUR
Conclusions: The study findings confirm findings from the previous machine-learning study, indicating that observing reduced expression of emotion may serve two purposes: first, it may add predictive value to psychosis conversion, and second, it is readily observable.
This may facilitate detection of those most at risk within the clinical high risk of psychosis population, as well as those at clinical high risk. A next step could be including this symptom within current high-risk criteria. Future research should consolidate these findings.

In-silico evidence for enhancement of avian influenza virus H9N2 virulence by modulation of its hemagglutinin (HA) antigen function and stability during co-infection with infectious bronchitis virus in chickens

In the last few decades, frequent incidences of avian influenza (AI) H9N2 outbreaks have caused high mortality in poultry farms resulting in colossal economic losses in several countries. In Egypt, the co-infection of H9N2 with the infectious bronchitis virus (IBV) has been observed extensively during these outbreaks. However, the pathogenicity of H9N2 in these outbreaks remained controversial.
The current study reports isolation and characterization of the H9N2 virus recovered from a concurrent IBV infected broiler chicken flock in Egypt during 2011. The genomic RNA was subjected to RT-PCR amplification followed by sequencing and analysis. The deduced amino acid sequences of the eight segments of the current study H9N2 isolate were compared with those of Egyptian H9N2 viruses isolated from healthy and diseased chicken flocks from 2011 to 2013.
In the phylogenetic analysis, the current study isolate was found to be closely related to the other Egyptian H9N2 viruses. Notably, no particular molecular characteristic difference was noticed among all the Egyptian H9N2 isolates from apparently healthy, diseased or co-infected with IBV chicken flocks.
Nevertheless, in-silico analysis, we noted modulation of stability and motifs structure of Hemagglutinin (HA) antigen among the co-infecting H9N2 AI and the IBV and isolates from the diseased flocks. The findings suggest that the putative factor for enhancement of the H9N2 pathogenicity could be co-infection with other respiratory pathogens such as IBV that might change the HA stability and function.

Recombinant bluetongue virus with hemagglutinin epitopes in VP2 has potential as a labeled vaccine

Bluetongue (BT) is an arbovirus-borne disease of ruminants caused by bluetongue virus (BTV) that has the potential to have a serious economic impact.
Currently available commercial vaccines include attenuated vaccines and inactivated vaccines, both of which have achieved great success in the prevention and control of BTV. However, these vaccines cannot distinguish between infected animals and immunized animals.
To control outbreaks of BTV, the development of labeled vaccines is urgently needed. In this study, we used the plasmid-based reverse genetics system (RGS) of BTV to rescue four recombinant viruses in which HA (influenza hemagglutinin) tags were inserted at different sites of VP2.
In vitro, the recombinant tagged viruses exhibited morphologies, plaque, and growth kinetics similar to the parental BTV-16, and expressed both VP2 and HA tag.
Subsequently, the selected recombinant tagged viruses were prepared as inactivated vaccines to immunize IFNAR(-/-) mice and sheep, and serological detection results of an anti-HA antibody provided discriminative detection. In summary, we used plasmid-based RGS to rescue BTV recombinant viruses with HA tags inserted into VP2, and detected several sites on VP2 that can accommodate HA tags.
Some of the recombinant tagged viruses have potential to be developed into distinctive inactivated vaccines.

Functional Analysis of Botulinum Hemagglutinin (HA).

Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is the most potent toxin and produced as a complex with non-toxic components. Food-borne botulism is caused by the ingestion of these BoNT complexes. Hemagglutinin (HA), one of the non-toxic components, is known to have lectin (carbohydrate binding) activity and E-cadherin-binding activity. These activities promote the intestinal absorption of BoNT.
To elucidate the mechanism of the onset of food-borne botulism, we focused on the role of HA in the intestinal absorption of BoNT. We describe the functional analysis methods for HA, including the expression of recombinant proteins, binding to glycoproteins and epithelial cells, and localization in mouse intestinal tissue.

Influenza Hemagglutinin Nanoparticle Vaccine Elicits Broadly Neutralizing Antibodies against Structurally Distinct Domains of H3N2 HA

Influenza vaccine effectiveness varies annually due to the fast evolving seasonal influenza A(H3N2) strain and egg-derived mutations-both of which can cause a mismatch between the vaccine and circulating strains.
To address these limitations, we have developed a hemagglutinin (HA)-based protein-detergent nanoparticle influenza vaccine (NIV) with a saponin-based Matrix-M™ adjuvant. In a phase 1 clinical trial of older adults, the vaccine demonstrated broadly cross-reactive A(H3N2) HA antibody responses.
Two broadly neutralizing monoclonal antibodies derived from NIV-immunized mice were characterized by transmission electron microscopy (TEM), antibody competition assays, fluorescence-activated cell sorting (FACS) analysis, and protein-protein docking. These antibodies recognize two conserved regions of the head domain, namely the receptor binding site and the vestigial esterase subdomain, thus demonstrating the potential for an HA subunit vaccine to elicit antibodies targeting structurally and antigenically distinct but conserved sites.
Antibody competition studies with sera from the phase 1 trial in older adults confirmed that humans also make antibodies to these two head domains and against the highly conserved stem domain. This data supports the potential of an adjuvanted recombinant HA nanoparticle vaccine to induce broadly protective immunity and improved vaccine efficacy.

Measuring influenza hemagglutinin (HA) stem-specific antibody-dependent cellular cytotoxicity (ADCC) in human sera using novel stabilized stem nanoparticle probes.

Generating vaccine that confers a complete protection is a major goal in designing a universal influenza vaccine. Currently, there is a considerable interest in the broadly neutralizing antibodies (bnAb) targeting the conserved HA stem region.
These antibodies have been shown to activate cellular immune responses, such as ADCC, in addition to their neutralization activity. We had previously demonstrated that immunization with H1-based stabilized stem (SS) nanoparticles (np) protects against heterosubtypic lethal H5N1 challenge, despite the absence of detectable neutralizing activity.
Utilizing these novel SS probes to develop an ADCC assay would help in understanding the mechanism of action of stem-specific antibodies, as well as evaluating future influenza vaccines.To develop a new protocol to assess the ADCC activity mediated by stem-directed antibodies in human sera using novel SS np probes. Human sera samples were screened for binding and ADCC activities to different influenza group 1 SS probes (H1, H2, and H5) using trimeric SS or multivalent SS-np (n = 8 trimers) formats.Initial screening revealed 63% (57/90) seroprevalence of anti-HA (H1) stem-epitope antibodies, as determined by the differential binding to HA SS and its corresponding epitope-mutant (Ile45Arg/Thr49Arg) probe.

Hemagglutinin (HA Tag) Antibody

20-abx132270 Abbexa
  • 510.00 EUR
  • 159.60 EUR
  • 1412.40 EUR
  • 678.00 EUR
  • 393.60 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

Hemagglutinin (HA Tag) Antibody

20-abx130437 Abbexa
  • 410.40 EUR
  • 1062.00 EUR
  • 543.60 EUR
  • 184.80 EUR
  • 326.40 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

OVA Conjugated Hemagglutinin (HA)

4-CPX160Ge21 Cloud-Clone
  • 231.82 EUR
  • 186.00 EUR
  • 539.33 EUR
  • 259.78 EUR
  • 399.55 EUR
  • 230.40 EUR
  • 1168.32 EUR
  • 100 ug
  • 10ug
  • 1 mg
  • 200 ug
  • 500 ug
  • 50ug
  • 5 mg

Hemagglutinin (HA), human recombinant

4844-10 Biovision each 679.2 EUR

Influenza Hemagglutinin (HA) Peptide

A6004-25 ApexBio 25 mg 633.6 EUR

Influenza Hemagglutinin (HA) Peptide

A6004-5 ApexBio 5 mg 201.6 EUR

Influenza Hemagglutinin (HA) Peptide

A6004-5.1 ApexBio 10 mM (in 1mL DMSO) 560.4 EUR

Human hemagglutinin,HA ELISA Kit

201-12-1785 SunredBio 96 tests 528 EUR

Human hemagglutinin,HA ELISA Kit

CN-04295H1 ChemNorm 96T 520.8 EUR

Human hemagglutinin,HA ELISA Kit

CN-04295H2 ChemNorm 48T 340.8 EUR

Human hemagglutinin(HA)ELISA Kit

GA-E1801HM-48T GenAsia Biotech 48T 346.8 EUR

Human hemagglutinin(HA)ELISA Kit

GA-E1801HM-96T GenAsia Biotech 96T 559.2 EUR

Human hemagglutinin(HA)ELISA Kit

QY-E00658 Qayee Biotechnology 96T 480 EUR

Human hemagglutinin,HA ELISA Kit

YLA2774HU-48T Shanghai YL Biotech 48T 435 EUR

Human hemagglutinin,HA ELISA Kit

YLA2774HU-96T Shanghai YL Biotech 96T 562.5 EUR

Hemagglutinin (HA) Recombinant Protein

97-055 ProSci 0.1 mg 619.8 EUR

Hemagglutinin (HA) Recombinant Protein

97-056 ProSci 0.1 mg 619.8 EUR

Hemagglutinin (HA) Recombinant Protein

97-057 ProSci 0.1 mg 619.8 EUR

Influenza A virus Hemagglutinin (HA)

1-CSB-EP356317IDG Cusabio
  • 733.20 EUR
  • 370.80 EUR
  • 2192.40 EUR
  • 1126.80 EUR
  • 1461.60 EUR
  • 476.40 EUR
  • 100ug
  • 10ug
  • 1MG
  • 200ug
  • 500ug
  • 50ug

Influenza A virus Hemagglutinin (HA)

1-CSB-EP607773IER Cusabio
  • 733.20 EUR
  • 370.80 EUR
  • 2192.40 EUR
  • 1126.80 EUR
  • 1461.60 EUR
  • 476.40 EUR
  • 100ug
  • 10ug
  • 1MG
  • 200ug
  • 500ug
  • 50ug

Influenza A virus Hemagglutinin (HA)

1-CSB-EP714917IEX Cusabio
  • 733.20 EUR
  • 370.80 EUR
  • 2192.40 EUR
  • 1126.80 EUR
  • 1461.60 EUR
  • 476.40 EUR
  • 100ug
  • 10ug
  • 1MG
  • 200ug
  • 500ug
  • 50ug

Influenza A virus Hemagglutinin (HA)

1-CSB-EP721113IFG Cusabio
  • 733.20 EUR
  • 370.80 EUR
  • 2192.40 EUR
  • 1126.80 EUR
  • 1461.60 EUR
  • 476.40 EUR
  • 100ug
  • 10ug
  • 1MG
  • 200ug
  • 500ug
  • 50ug
Using equimolar amounts, the multivalent presentation of HA SS on np induced significantly higher ADCC activity compared to the monovalent (trimer) SS probes (2-6 fold increase).
Further, ADCC activity was similarly reported against different group 1 influenza subtypes: H1, H2, and H5. Importantly, ADCC was mediated mainly by antibodies targeting the bnAb-epitope on the HA stem.We report on an assay to measure stem-specific ADCC activity using SS np probes.
Our results indicate high prevalence of HA-stem antibodies with cross-reactive ADCC activity. Such assay could be utilized in the assessment of next generation influenza vaccines.

Modified uvsY by N-terminal hexahistidine tag addition enhances efficiency of recombinase polymerase amplification to detect SARS-CoV-2 DNA

Background: Recombinase (uvsY and uvsX) from bacteriophage T4 is a key enzyme for recombinase polymerase amplification (RPA) that amplifies a target DNA sequence at a constant temperature with a single-stranded DNA-binding protein and a strand-displacing polymerase. The present study was conducted to examine the effects of the N- and C-terminal tags of uvsY on its function in RPA to detect SARS-CoV-2 DNA.
Methods: Untagged uvsY (uvsY-Δhis), N-terminal tagged uvsY (uvsY-Nhis), C-terminal tagged uvsY (uvsY-Chis), and N- and C-terminal tagged uvsY (uvsY-NChis) were expressed in Escherichia coli and purified. RPA reaction was carried out with the in vitro synthesized standard DNA at 41 °C. The amplified products were separated on agarose gels.
Results: The minimal initial copy numbers of standard DNA from which the amplified products were observed were 6 × 105, 60, 600, and 600 copies for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The minimal reaction time at which the amplified products were observed were 20, 20, 30, and 20 min for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The RPA with uvsY-Nhis exhibited clearer bands than that with either of other three uvsYs.
Conclusions: The reaction efficiency of RPA with uvsY-Nhis was the highest, suggesting that uvsY-Nhis is suitable for use in RPA.
Keywords: Hexahistidine tag; Isothermal DNA amplification; Recombinase polymerase amplification (RPA); uvsY.

A Strategy to Fight against Triple-Negative Breast Cancer: pH-Responsive Hexahistidine-Metal Assemblies with High-Payload Drugs

Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer, is difficult to be targeted therapeutically due to negative expression of the bioreceptor, which leads to the poorest overall four-year survival rate among all cancer subtypes.
We proposed that the nanomedicine featuring high payload and pH-responsive release of the loaded drugs could assist the TNBC treatment. In the present study, the His6-metal assemblies (HmA) were employed to encapsulate the doxorubicin (Dox), and the effect of HmA loaded with Dox (HmA@Dox) on treating TNBC was evaluated in vitro and in vivo.
We found that the participation of Dox in the formation of HmA leads to high loading efficiency (99.4% for concentration ≤ 1 mg/mL) and the loading capacity (50.7% for concentration ≥ 10 mg/mL) of Dox encapsulated into HmA. HmA@Dox exhibited a narrow size distribution on the nanoscale, a pH-responsive release of loaded Dox, a quick endocytosis process, and fast lysosome escape. Most importantly, the HmA@Dox showed high efficacy in killing various breast cancer cells (MCF-7, MDA-MB-231, and MDA-MB-453) in vitro and depressing the development of TNBC in vivo.
Our results demonstrated that such a strategy for designing a nanomedicine with high payload and responsive release of drugs to the environment around the tumor was of great importance to treat TNBC.

Efficient Delivery of Antibodies Intracellularly by Co-Assembly with Hexahistidine-Metal Assemblies (HmA)

Purpose: There has been a substantial global market for antibodies, which are based on extracellular targets. Binding intracellular targets by antibodies will bring new chances in antibody therapeutics and a huge market increase. We aim to evaluate the efficiency of a novel delivery system of His6-metal assembly (HmA) in delivering intracellular antibodies and biofunctions of delivered antibodies.
Methods: In this study, the physicochemical properties of HmA@Antibodies generated through co-assembling with antibodies and HmA were well characterized by dynamic light scatter. The cytotoxicity of HmA@Antibodies was investigated by Cell Counting Kit-8 (CCK-8). The endocytic kinetics and lysosome escape process of HmA@Antibodies were studied by flow cytometry and fluorescent staining imaging, respectively. Compared to the commercialized positive control, the intracellular delivery efficiency by HmA@Antibodies and biofunctions of delivered antibodies were evaluated by fluorescent imaging and CCK-8.
Results: Various antibodies (IgG, anti-β-tubulin and anti-NPC) could co-assemble with HmA under a gentle condition, producing nano-sized (~150 nm) and positively charged (~+30 eV) HmA@Antibodies particles with narrow size distribution (PDI ~ 0.15). HmA displayed very low cytotoxicity to divers cells (DCs, HeLa, HCECs, and HRPE) even after 96 h for the feeding concentration ≤100 μg mL-1, and fast escape from endosomes. In the case of delivery IgG, the delivery efficiency into alive cells of HmA was better than a commercial protein delivery reagent (PULSin).
For cases of the anti-β-tubulin and anti-NPC, HmA showed comparable delivery efficiency to their positive controls, but HmA with ability to deliver these antibodies into alive cells was still superior to positive controls delivering antibodies into dead cells through punching holes.
Conclusion: Our results indicate that this strategy is a feasible way to deliver various antibodies intracellularly while preserving their functions, which has great potential in various applications and treating many refractory diseases by intracellular antibody delivery.
Keywords: antibody; coordination polymer; intracellular delivery; nanocarrier; peptide assembly.

Efficient delivery of cytosolic proteins by protein-hexahistidine-metal co-assemblies

Proteins play key roles in most biological processes, and protein dysfunction can cause various diseases. Over the past few decades, tremendous development has occurred in the protein therapeutic market due to the high specificity, low side effects, and low risk of proteins.
Currently, all protein drugs on the market are based on extracellular targeting; more than 70% of intracellular targets remain un-druggable. Efficient delivery of cytosolic proteins is of significance for protein drugs, advanced biotechnology and molecular cell biology. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for intracellular protein delivery.
Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged protein encapsulation particles(Protein@HmA) through a co-assembly process with a high loading capacity and loading efficiency.
Protein@HmA was able to deliver proteins with diverse physicochemical properties through multiple endocytosis pathways, and the protein could quickly escape from endosomes.
In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells. Our results demonstrate that this strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics,
 STATEMENT OF SIGNIFICANCE: : Intracellular targets with protein drugs may provide a new way for the treatment of many refractory disease. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for efficient intracellular protein delivery.

Hexa-His

HY-P0294 MedChemExpress 10mM/1mL 320.4 EUR

Anti-Hexahistidine (His6) tag Antibody

STJ60100 St John's Laboratory 100 µg 508.8 EUR

Recombinant Human MBL2 Protein-Hexahistidine tag

CTP-244 Creative Biolabs 100ug Ask for price

Hexa His

5-01302 CHI Scientific 4 x 5mg Ask for price

AMD 3465 hexahydrobromide

B3397-10 ApexBio 10 mg 306 EUR

AMD 3465 hexahydrobromide

B3397-25 ApexBio 25 mg 614.4 EUR

AMD 3465 hexahydrobromide

B3397-5 ApexBio 5 mg 189.6 EUR

AMD 3465 (hexahydrobromide)

HY-15971 MedChemExpress 10mM/1mL 192 EUR

Hexa His Peptide

20-abx265797 Abbexa
  • 393.60 EUR
  • 594.00 EUR
  • 326.40 EUR
  • 10 mg
  • 25 mg
  • 5 mg

Hexahydrothymol

S-7588 Scientific Laboratory Supplies EACH 91.2 EUR

Hexa His tag peptide

A6006-25 ApexBio 25 mg 780 EUR

Hexa His tag peptide

A6006-5 ApexBio 5 mg 238.8 EUR

Hexahydrocurcumin

HY-N0929 MedChemExpress 5mg 721.2 EUR

Hexahydrocurcumin

TBZ2433 ChemNorm unit Ask for price

Zinc nitrate hexahydrate

GX0843-100G Glentham Life Sciences 100 g 52.8 EUR

Zinc nitrate hexahydrate

GX0843-1KG Glentham Life Sciences 1 kg 117.6 EUR

Zinc nitrate hexahydrate

GX0843-250G Glentham Life Sciences 250 g 64.8 EUR

Zinc nitrate hexahydrate

GX0843-500G Glentham Life Sciences 500 g 84 EUR

Zinc nitrate hexahydrate

GX0843-5KG Glentham Life Sciences 5 kg 279.6 EUR

Zinc nitrate, hexahydrate

ZB1004 Bio Basic 500g 116.38 EUR

R788 disodium hexahydrate

B3246-10 ApexBio 10 mg 320.4 EUR

R788 disodium hexahydrate

B3246-100 ApexBio 100 mg 1340.4 EUR

R788 disodium hexahydrate

B3246-5 ApexBio 5 mg 234 EUR

R788 disodium hexahydrate

B3246-5.1 ApexBio 10 mM (in 1mL DMSO) 339.6 EUR

R788 disodium hexahydrate

B3246-50 ApexBio 50 mg 841.2 EUR

Piperazine hexahydrate

GK2644-100G Glentham Life Sciences 100 g 52.8 EUR

Piperazine hexahydrate

GK2644-1KG Glentham Life Sciences 1 kg 109.2 EUR
Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged particles (Protein@HmA) with a high loading efficiency.
Protein@HmA was able to deliver different proteins through multiple endocytosis pathways, and the protein could quickly escape from endosomes. In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells.
This strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics.

Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production

Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown.
To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone.
The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays.
A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.

The Dual Histone Deacetylase-Proteasome Inhibitor RTS-V5 Acts Synergistically With Ritonavir to Induce Endoplasmic Reticulum Stress in Bladder Cancer Cells

Background/aim: Simultaneous inhibition of histone deacetylase and proteasomes induces endoplasmic reticulum (ER) stress efficiently. RTS-V5 is the first dual histone deacetylase-proteasome inhibitor, and we anticipated that combining it with the cytochrome P450 family 3 subfamily A member 4 inhibitor ritonavir would enhance its activity in bladder cancer cells.
Materials and methods: Using bladder cancer cells (human T-24, J-82, murine MBT-2), we evaluated the ability and mechanism by which the combination of RTS-V5 and ritonavir induced ER stress and killed cancer cells.
Results: The combination of RTS-V5 and ritonavir triggered robust apoptosis and inhibited bladder cancer growth effectively in vitro and in vivo.
It caused ubiquitinated protein accumulation and induced ER stress synergistically. The combination inhibited the mammalian target of rapamycin pathway by increasing the expression of AMP-activated protein kinase. We also found that the combination caused histone and tubulin hyperacetylation.
Conclusion: Ritonavir enhances the ability of RTS-V5 to cause ER stress in bladder cancer cells.
Keywords: Histone deacetylase; endoplasmic reticulum stress; proteasome; ritonavir.

Ischemic ST-Segment Depression Maximal in V1-V4 (Versus V5-V6) of Any Amplitude Is Specific for Occlusion Myocardial Infarction (Versus Nonocclusive Ischemia)

Background Occlusion myocardial infarctions (OMIs) of the posterolateral walls are commonly missed by ST-segment-elevation myocardial infarction (STEMI) criteria, with >50% of patients with circumflex occlusion not receiving emergent reperfusion and experiencing increased mortality. ST-segment depression maximal in leads V1-V4 (STDmaxV1-4) has been suggested as an indicator of posterior OMI.
Methods and Results We retrospectively reviewed a high-risk population with acute coronary syndrome. OMI was defined from prior studies as a culprit lesion with TIMI (Thrombolysis in Myocardial Infarction) 0 to 2 flow or TIMI 3 flow plus peak troponin T >1.0 ng/mL or troponin I >10 ng/mL. STEMI was defined by the Fourth Universal Definition of Myocardial Infarction. ECGs were interpreted blinded to outcomes. Among 808 patients, there were 265 OMIs, 108 (41%) meeting STEMI criteria. A total of 118 (15%) patients had “suspected ischemic” STDmaxV1-4, of whom 106 (90%) had an acute culprit lesion, 99 (84%) had OMI, and 95 (81%) underwent percutaneous coronary intervention.
Suspected ischemic STDmaxV1-4 had 97% specificity and 37% sensitivity for OMI. Of the 99 OMIs detected by STDmaxV1-4, 34% had <1 mm ST-segment depression, and only 47 (47%) had accompanying STEMI criteria, of which 17 (36%) were identified a median 1.00 hour earlier by STDmaxV1-4 than STEMI criteria. Despite similar infarct size, TIMI flow, and coronary interventions, patients with STEMI(-) OMI and STDmaxV1-4 were less likely than STEMI(+) patients to undergo catheterization within 90 minutes (46% versus 68%; P=0.028).
Conclusions Among patients with high-risk acute coronary syndrome, the specificity of ischemic STDmaxV1-4 was 97% for OMI and 96% for OMI requiring emergent percutaneous coronary intervention. STEMI criteria missed half of OMIs detected by STDmaxV1-4. Ischemic STDmaxV1-V4 in acute coronary syndrome should be considered OMI until proven otherwise.

PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies

PhylomeDB is a unique knowledge base providing public access to minable and browsable catalogues of pre-computed genome-wide collections of annotated sequences, alignments and phylogenies (i.e. phylomes) of homologous genes, as well as to their corresponding phylogeny-based orthology and paralogy relationships.
In addition, PhylomeDB trees and alignments can be downloaded for further processing to detect and date gene duplication events, infer past events of inter-species hybridization and horizontal gene transfer, as well as to uncover footprints of selection, introgression, gene conversion, or other relevant evolutionary processes in the genes and organisms of interest. Here, we describe the latest evolution of PhylomeDB (version 5).
This new version includes a newly implemented web interface and several new functionalities such as optimized searching procedures, the possibility to create user-defined phylome collections, and a fully redesigned data structure.
This release also represents a significant core data expansion, with the database providing access to 534 phylomes, comprising over 8 million trees, and homology relationships for genes in over 6000 species.
This makes PhylomeDB the largest and most comprehensive public repository of gene phylogenies. PhylomeDB is available at http://www.phylomedb.org.
Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image
This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images.
Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network.
Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images.
Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set.
\The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets.

V5 antibody

10R-10453 Fitzgerald 100 ug 522 EUR

V5 antibody

10R-10454 Fitzgerald 100 ug 522 EUR

V5 antibody

10R-10455 Fitzgerald 100 ug 522 EUR

V5 Antibody

20-abx118003 Abbexa
  • 661.20 EUR
  • 577.20 EUR
  • 100 ul
  • 50 ul

V5-Tag Mouse Monoclonal Antibody, Clone V5.E10

Ab1008-100 GenDepot 100ug 457.2 EUR

V5-Tag Mouse Monoclonal Antibody, Clone V5.E10

Ab1008-101 GenDepot 1mg 2733.6 EUR

V5 Epitope Tag

5-02067 CHI Scientific 4 x 5mg Ask for price

V5 tag antibody

70R-12231 Fitzgerald 100 ug 523.2 EUR

V5-Tag Antibody

48047-100ul SAB 100ul 399.6 EUR

V5-Tag Antibody

48047-50ul SAB 50ul 286.8 EUR

V5 tag Antibody

48731-100ul SAB 100ul 399.6 EUR

V5 tag Antibody

48731-50ul SAB 50ul 286.8 EUR

V5 Tag antibody

10R-2939 Fitzgerald 100 ug 204 EUR

V5 Tag antibody

10R-7558 Fitzgerald 100 ug 318 EUR
Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images.
Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.

Complement Inhibitors Vitronectin and Clusterin Are Recruited from Human Serum to the Surface of Coronavirus OC43-Infected Lung Cells through Antibody-Dependent Mechanisms

Little is known about the role of complement (C’) in infections with highly prevalent circulating human coronaviruses such as OC43, a group of viruses of major public health concern. Treatment of OC43-infected human lung cells with human serum resulted in C3 deposition on their surfaces and generation of C5a, indicating robust C’ activation.
Real-time cell viability assays showed that in vitro C’-mediated lysis of OC43 infected cells requires C3, C5 and C6 but not C7, and was substantially delayed as compared to rapid C’-mediated killing of parainfluenza virus type 5 (PIV5)-infected cells.
In cells co-infected with OC43 and PIV5, C’-mediated lysis was delayed, similar to OC43 infected cells alone, suggesting that OC43 infection induced dominant inhibitory signals.
When OC43-infected cells were treated with human serum, their cell surfaces contained both Vitronectin (VN) and Clusterin (CLU), two host cell C’ inhibitors that can alter membrane attack complex (MAC) formation and C’-mediated killing.
VN and CLU were not bound to OC43-infected cells after treatment with antibody-depleted serum. Reconstitution experiments with purified IgG and VN showed that human antibodies are both necessary and sufficient for VN recruitment to OC43-infected lung cells-novel findings with implications for CoV pathogenesis.

Additivity in effects of vitronectin and monoclonal antibodies against alpha-helix F of plasminogen activator inhibitor-1 on its reactions with target proteinases.

The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators.
Both mAbs delay the RCL insertion and induce an increase in the stoichiometry of inhibition (SI) to 1.4-9.5.
Binding of vitronectin to NBD P9 PAI-1 does not affect SI but results in a 2.0-6.5-fold decrease in the limiting rate constant (klim) of RCL insertion for urokinase-type plasminogen activator at pH 6.2-8.0 and for tissue-type plasminogen activator at pH 6.2.
Binding of vitronectin to the complexes of NBD P9 PAI-1 with mAbs results in a decrease in klim and in a 1.5-22-fold increase in SI. Thus, vitronectin and mAbs demonstrated additivity in the effects on the reaction with target proteinases.
The same step in the reaction mechanism remains to limit for the rate of RCL insertion in the absence and presence of Vn and mAbs. We hypothesize that vitronectin, bound to alpha-helix F on the side opposite to the epitopes of the mAbs, potentiates the mAb-induced delay in RCL insertion and the associated substrate behavior by selectively decreasing the rate constant for the inhibitory branch of PAI-1 reaction (ki).
These results demonstrate that mAbs represent a valid approach for inactivation of vitronectin-bound PAI-1 in vivo.

Activated vitronectin as a target for anticancer therapy with human antibodies.

The formation of a provisional extracellular matrix represents an important step during tumor growth and angiogenesis. Proteins that participate in this process become activated and undergo conformational changes that expose biologically active cryptic sites.
Activated matrix proteins express epitopes not found on their native counterparts. We hypothesized that these epitopes may have a restricted tissue distribution, rendering them suitable targets for therapeutic human monoclonal antibodies (huMabs).
In this study, we exploited phage antibody display technology and subtractive phage selection to generate human monoclonal antibody fragments that discriminate between the activated and native conformation of the extracellular matrix protein vitronectin.
One of the selected antibody fragments, scFv VN18, was used to construct a fully human IgG/kappa monoclonal antibody with an affinity of 9.3 nM. In immunohistochemical analysis, scFv and huMab VN18 recognized activated vitronectin in tumor tissues, whereas hardly any activated vitronectin was detectable in normal tissues.
Iodine 123-radiolabeled huMabVN18 was shown to target to Rous sarcoma virus-induced tumors in chickens, an animal model in which the epitope for huMab VN18 is exposed during tumor development. Our results establish activated vitronectin as a potential target for tumor therapy in humans.

New insights into heparin binding to vitronectin: studies with monoclonal antibodies.

Vitronectin is a plasma glycoprotein that binds to a variety of ligands. There is considerable debate regarding the dependency of these binding interactions upon the conformational status of vitronectin, the role of multimerization and how the binding of different ligands can change vitronectin’s conformational state.
We have developed a method of capturing vitronectin directly from fresh plasma using solid-phase monoclonal antibodies. Various biotin-labelled secondary monoclonal antibodies were used to quantify the bound vitronectin and to measure its degree of denaturation.
Using these tools we demonstrated that one monoclonal antibody partially denatured vitronectin without direct multimerization.
Treatment of vitronectin in plasma with soluble heparin produced a similar degree of denaturation. These results led to a proposed adaptation of the unfolding/refolding pathways for chemically denatured vitronectin originally presented by Zhuang and co-workers in 1996 [Zhuang, Blackburn and Peterson (1996) J. Biol. Chem. 271, 14323-14332 and Zhuang, Li, Williams, Wagner, Seiffert and Peterson (1996) J. Biol. Chem. 271, 14333-14343]. The adapted version allows for the production of a more stable partially unfolded intermediate, resulting from the binding of particular ligands.
We also demonstrated that the avidity of heparin binding to vitronectin is governed by both the conformational state of the monomer and multimerization of the molecule.

Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1: implications for antibody-mediated PAI-1-neutralization and vitronectin-binding.

The inhibitory mechanism of serine proteinase inhibitors of the serpin family is based on their unique conformational flexibility. The formation of a stable proteinase-serpin complex implies insertion of the reactive centre loop of the serpin into the large central beta-sheet A and a shift in the relative positions of two groups of secondary structure elements, the smaller one including alpha-helix F.
In order to elucidate this mechanism,
we have used phage-display and alanine scanning mutagenesis to map the epitopes for four monoclonal antibodies against alpha-helix F and its flanking region in the serpin plasminogen activator inhibitor-1 (PAI-1).
One of these is known to inhibit the reaction between PAI-1 and its target proteinases, an effect that is potentiated by vitronectin, a physiological carrier protein for PAI-1.
When combined with the effects these antibodies have on PAI-1 activity, our epitope mapping points to the mobility of amino-acid residues in alpha-helix F and the loop connecting alpha-helix F and beta-strand 3A as being important for the inhibitory function of PAI-1.

Vitronectin antibody

10-1962 Fitzgerald 200 ul 651.6 EUR

Vitronectin antibody

10-1963 Fitzgerald 200 ul 651.6 EUR

Vitronectin antibody

10-1964 Fitzgerald 200 ul 922.8 EUR

Vitronectin antibody

10-1965 Fitzgerald 200 ul 651.6 EUR

Vitronectin antibody

10R-8488 Fitzgerald 100 ul 471.6 EUR

Vitronectin antibody

20R-1396 Fitzgerald 10 mg 330 EUR

Vitronectin Antibody

abx023996-200ug Abbexa 200 ug 693.6 EUR

Vitronectin antibody

70R-10610 Fitzgerald 500 ug 590.4 EUR

Vitronectin antibody

70R-14336 Fitzgerald 100 ug 386.4 EUR

Vitronectin antibody

70R-50548 Fitzgerald 100 ul 292.8 EUR

Vitronectin Antibody

48876-100ul SAB 100ul 399.6 EUR

Vitronectin Antibody

48876-50ul SAB 50ul 286.8 EUR

Vitronectin Antibody

R31877 NSJ Bioreagents 100 ug 356.15 EUR

Vitronectin antibody (HRP)

60R-1036 Fitzgerald 100 ug 429.6 EUR

Vitronectin Antibody / VTN

F54930-0.08ML NSJ Bioreagents 0.08 ml 140.25 EUR

Vitronectin Antibody / VTN

F54930-0.4ML NSJ Bioreagents 0.4 ml 322.15 EUR

Vitronectin Antibody / VTN

RQ5026 NSJ Bioreagents 100ul 356.15 EUR

anti- Vitronectin antibody

FNab09415 FN Test 100µg 658.5 EUR

Human Vitronectin Antibody

48629-05011 AssayPro 150 ug 260.4 EUR

Vitronectin (VTN) Antibody

20-abx318002 Abbexa
  • 493.20 EUR
  • 2214.00 EUR
  • 718.80 EUR
  • 218.40 EUR
  • 360.00 EUR
  • 100 ug
  • 1 mg
  • 200 ug
  • 20 ug
  • 50 ug

Vitronectin (VTN) Antibody

abx239415-100ug Abbexa 100 ug 610.8 EUR
Although all antibodies reduced the affinity of PAI-1 for vitronectin, the potentiating effect of vitronectin on antibody-induced PAI-1 neutralization is based on formation of a ternary complex between antibody, PAI-1 and vitronectin, in which PAI-1 is maintained in a state behaving as a substrate for plasminogen activators.
These results thus provide new details about serpin conformational changes and the regulation of PAI-1 by vitronectin and contribute to the necessary basis for rational design of drugs neutralizing PAI-1 in cancer and cardiovascular diseases.

Short-Term Therapy with Anti-ICAM-1 Monoclonal Antibody Induced Long-Term Liver Allograft Survival in Non-Human Primates

Tolerance induction remains challenging following liver transplantation and the long-term use of immunosuppressants, especially calcineurin inhibitors, leads to serious complications.
We aimed to test an alternative immunosuppressant, a chimeric anti-ICAM-1 monoclonal antibody, MD-3, for improving outcomes of liver transplantation. We used a rhesus macaques liver transplantation model and monkeys were divided into three groups: no immunosuppression (n=2), conventional immunosuppression (n=4), and MD-3 (n=5).
Without immunosuppression, liver allografts failed within a week by acute rejection. Sixteen-week-long conventional immunosuppression that consisted of prednisolone, tacrolimus, and an mTOR inhibitor, prolonged liver allograft survival; however, recipients died of acute T cell-mediated rejection (day 52), chronic rejection (day 62, 66) or adverse effects of mTOR inhibitor (day 32).
In contrast, 12 weeks-long MD-3 therapy with transient conventional immunosuppression in the MD-3 group significantly prolonged the survival of liver allograft recipients (5, 96, 216, 412, 730 days; P = 0.0483). MD-3 effectively suppressed intragraft inflammatory cell infiltration, anti-donor T cell responses and donor-specific antibody with intact anti-cytomegalovirus antibody responses.
However, this regimen ended in chronic rejection. In conclusion, short-term therapy with MD-3 markedly improved liver allograft survival to 2 years without maintenance of immunosuppressant. MD-3 is therefore a promising immune-modulating agent for liver transplantation.

Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy

Despite several therapeutic advances, patients with multiple myeloma (MM) require additional treatment options since no curative therapy exists yet.
In search of a novel therapeutic antibody, we previously applied phage display with myeloma cell screening and developed TP15, a scFv targeting intercellular adhesion molecule 1 (ICAM-1/CD54). To more precisely evaluate the antibody’s modes of action, fully human IgG1 antibody variants were generated bearing wild-type (MSH-TP15) or mutated Fc to either enhance (MSH-TP15 Fc-eng.) or prevent (MSH-TP15 Fc k.o.) Fc gamma receptor binding. Especially MSH-TP15 Fc-eng. induced potent antibody-dependent cell-mediated cytotoxicity (ADCC) against malignant plasma cells by efficiently recruiting NK cells and engaged macrophages for antibody-dependent cellular phagocytosis (ADCP) of tumor cells. Binding studies with truncated ICAM-1 demonstrated MSH-TP15 binding to ICAM-1 domain 1-2.
Importantly, MSH-TP15 and MSH-TP15 Fc-eng. both prevented myeloma cell engraftment and significantly prolonged survival of mice in an intraperitoneal xenograft model. In the subcutaneous model MSH-TP15 Fc-eng. was superior to MSH-TP15, whereas MSH-TP15 Fc k.o. was not effective in both models – reflecting the importance of Fc-dependent mechanisms of action also in vivo.
The efficient recruitment of immune cells and the potent anti-tumor activity of the Fc-engineered MSH-TP15 antibody hold significant potential for myeloma immunotherapy.

Effective targeted therapy for drug-resistant infection by ICAM-1 antibody-conjugated TPGS modified β-Ga2O3:Cr3+ nanoparticles.

The prevalence of antibiotic resistance and lack of alternative drugs have posed an increasing threat to public health. Here, we prepared β-Ga2O3:Cr3+ nanoparticles modified with ICAM1-antibody-conjugated TPGS (I-TPGS/Ga2O3) as a novel antibiotic carrier for the treatment of drug-resistant infections.
 Methods: I-TPGS/Ga2O3 were firstly characterized by measuring particle size, morphology, crystal structure, drug loading capacity, and in vitro drug release behaviors. The in vitro antibacterial activities of I-TPGS/Ga2O3/TIG were evaluated using standard and drug-resistant bacteria. The internalization of I-TPGS/Ga2O3 was observed by fluorescence confocal imaging, and the expression levels of the efflux pump genes of TRKP were analyzed by real-time RT-PCR.
In vitro cellular uptake and in vivo biodistribution study were performed to investigate the targeting specificity of I-TPGS/Ga2O3 using HUEVC and acute pneumonia mice, respectively. The in vivo anti-infective efficacy and biosafety of I-TPGS/Ga2O3/TIG were finally evaluated using acute pneumonia mice.
 Results: It was found that TPGS could down-regulate the over-expression of the efflux pump genes, thus decreasing the efflux pump activity of bacteria. I-TPGS/Ga2O3 with small particle size and uniform distribution facilitated their internalization in bacteria, and the TPGS modification resulted in a significant reduction in the efflux of loaded antibiotics.
These properties rendered the encapsulated tigecycline to exert a stronger antibacterial activity both in vitro and in vivo. Additionally, targeted delivery of I-TPGS/Ga2O3 mediated by ICAM1 antibodies contributed to a safe and effective therapy.
 Conclusion: It is of great value to apply I-TPGS/Ga2O3 as a novel and effective antibiotic delivery system for the treatment of drug-resistant infections.